热点关注

散热成难题 核污染引担忧

人类能否在外星建核电站

近日,美国消费者新闻 与商业频道网站报道,美国 国家航空航天局 (NASA) 和美国能源部计划在月球和 火星建造核电站,以支持其 长期探索计划。那么, NASA在月球建核电站这事 儿靠谱吗?

月球将建10千瓦级核 裂变电力系统

NASA 太空技术任务局核技 术组负责人安东尼・卡洛米诺 说,NASA的目标是到21世纪20 年代末开发出一个10千万级的 核裂变电力系统,并在月球上演 示。"这一核裂变电力系统的输 出功率为10千瓦,可连续不断 地工作至少10年。"

具体而言,该设施将在地球 上制造和组装,随后将该设施整 合到月球着陆器内,由运载工具 运送到绕月轨道。接下来,着陆 器降落至月球表面,到达之后无 须额外组装或建造即可运行。

"低浓缩形式的核燃料将为 堆芯提供动力, 小型核反应堆产 生的热量将被转移到动力转换系 统中。动力转换系统由靠反应堆 热能工作的发电机组成,这些发 电机将热能转化为电力,并将之 用于月球和火星表面的用户设 备。此外,散热技术对于保持设备正常运行非常重要。"卡洛米 诺说,"4套这样的系统,每个提 供10千瓦电力,就足以提供在 月球或火星上建立前哨基地所需 电力。

在月球建造核反应堆是否安全

一家核能领域就业机构创始人安德 鲁·克拉布特里说,此前科学家们就在 月球上使用过核能。阿波罗12号使用的 阿波罗月面实验套装中的仪器就是由一 部RTG放射性同位素热电机供电的,它 标志着人类首次在月球上使用核电系统。

"有个专业术语叫核安全轨道,也就 卫星的轨道必须足够高,才能保证 给卫星提供能源的核反应堆不会掉落在地

球上。月亮的轨道距地球38万公里,已经 足够高, 所以在月球上建造核反应堆没有这方面的担忧。"中国航天科工集团公司 二院研究员杨宇光说,"但是在太空使用核能面临着散热的难题。"美国"自由生物安 全"公司首席医疗创新官乔斯·莫瑞博士则 表示,即使这一设施在月球发生事故,给地 球造成的风险也很小,因为大气层会将致 命的辐射阻挡在外层空间,保护地球。

人 大力开发核能源,加快驶向宇宙更深处

也有不同声音指出,在月球上建造核 电站完全没有必要。随着太阳能、风能和 小型水电系统提供清洁能源的成本迅速下 降,再加上通过节约能源使得效率不断提 高,没有理由建立耗时、昂贵且令人担忧 的核电站。没有它,人类也可以满足能源 的需求。

对此,杨宇光表示,目前的载人航天 主要能源有3类:太阳能、化学能(燃料 电池等)以及核能。但随着未来太空探索 任务需求日益提高,以及太阳能、化学能 在深空探索(比如前往火星和木星乃至更 深远的太空)和星表探索中的局限性,必

须依靠以核反应堆为基础的核能源。

他指出,核反应堆电源的功率大、能 量密度高,相比其他电源具有较高的功率 质量比,可在太阳能、风能和水力发电不 易获得的环境下工作。例如, 火星上周期 性的沙尘暴可能会持续数月、而月球上永 久阴影的陨石坑内没有阳光,这些情况下 都难以利用太阳能。此外,月球南极现在 是研究热点,因为此处有永久光照区,在 这里可以利用太阳能, 但如果科学家们想 在月球表面低纬度地区建立科考站, 那将 面临长达14天的月夜,最好的解决办法就 是建立核反应堆来提供能源。 据新华网

科技前沿

我国的"人造太阳"已建成

建在成都,规模最大,参数最高

实时监控大屏上一道电光闪过, 稍作间歇又是一道,频繁闪烁……12 月4日,在成都西南角,我国新一代 可控核聚变研究装置"中国环流器二 号M"(HL-2M)正式建成放电。

这标志着我国正式跨人全球可控 核聚变研究前列。HL-2M将进一步 加快人类探索未来能源的步伐。

我国自主知识产权研究的装置

"核聚变由氘、氚离子聚合成 氦,聚合中损失的质量转化为超强能 量,这和太阳发光发热原理相同,所 以可控核聚变研究装置又被称为 。"中核集团核工业西南物理 造太阳' 研究院聚变科学所所长许敏介绍, "HL-2M是我国规模最大、参数最高的 '人造太阳'。"

可控核聚变需要超高温、超高密 度等条件,多采用先进托卡马克装 置,通过超强磁场将1亿℃的等离子体

约束在真空室内,达到反应条件。目 前全球科研工作者都在共同探索其实 现方法,建造模拟实验平台,而HL-2M是我国自主知识产权的模拟核聚变 研究装置。

等离子体的磁约束时间为10秒

该装置比上一代型号HL-2A更加 紧凑, 等离子体温度可达到1.5亿℃,

远超 HL-2A 的 5500 万℃, 等离子体 体积3倍于HL-2A, 等离子体电流强 度6倍于HL-2A,可实现高密度、高 比压、高自举电流运行,将大力提 升我国堆芯级等离子体物理研究及 相关关键技术研发水平。

聚变科学所总工程师杨青巍 说:"国际上等离子体的磁约束时间 大约不到1秒, HL-2M可实现10 秒,对超高温等离子体的磁现象、 流体不稳定性、约束湍流等前沿研 究具有重大意义。它也是国际热核 聚变实验堆计划(ITER)的重要支

摚。 国际热核聚变实验堆计划是当今 世界规模最大、影响深远的国际大科 学工程,我国于2006年正式签约加入

该计划。法国、日本、美国、英国等 多国科学家持续多年在成都进行联合 研究,并设立"中法联合实验周",推 动全球相关科研进展。 据《广州日报》

华活科技

龙虾壳 助力制备电极材料

从中国科学技术大学获悉, 科研团队采用新方法,将厨余垃圾中 的小龙虾壳等合成制备成一种高性能 电极材料。研究显示,与现有电极材 料性能相比,该校朱锡锋教授研究团 队所制备的分层多孔碳在超级电容器 性能测试中,表现出宽工作电压、高 能量密度的明显优势,可用于包括电 动汽车在内的诸多应用领域。 晚综

起近科学

科学家找到 调控植物花期的开关

自然界很神奇,不同植物的开花 时间不一样,到底是什么神奇的力量 在调控开花时间? 科学家们一直在探 寻这个奥秘。

最近,安徽农业大学生命科学学 院李培金课题组,通过研究揭示了拟 南芥花期自然变异的调控新机制。一 般来说,每种植物都有最佳花期,在 此期间开花,就能实现稳产高产。 如果花期提前或滞后,就会给产量带 来不良影响。李培金说,玉米在开花 时对高温异常敏感,如果在7月份高 温天气开花,会导致雌雄花期不协调 和授粉失败,严重时颗粒无收,给农 业生产带来重大损失。解析植物开花 机制对辅助育种、提高产量有重要意

有研究发现, FRI和FLC是抑制 植物开花的两个关键基因。李培金团 队对世界范围内的102种拟南芥中的 FLC 基因表达水平进行了定量分析, 通过全基因组关联分析技术筛选出-个花期调控关键基因 SSF。 SSF 基因 编码的蛋白质担负着调控花期的功 能。通过进一步研究发现, SSF基因 编码的蛋白质具有两个变异类型: SSF414D和SSF414N。植物体广泛存 在的蛋白泛素化修饰和降解系统能识 别这两种蛋白质,并调控SSF蛋白质 水平的高低,从而影响开花抑制基因 FLC 的表达水平,导致植物花期发生

李培金解释说,SSF基因的两种变 异类型很神奇, SSF414D和SSF414N虽 然都能抑制植物开花,但414D功能更 强更明显, 414N 相对表现不明显。 414D主要存在于北方的植物中,相对 来讲可以使植物晚开花,适应北方的 寒冷气候;而414N主要存在于南方的 植物中,相对来讲调控植物早开花, 以适应南方较为温和的生长环境。

据《科技日报》